Trapping in scale-free networks with hierarchical organization of modularity.
نویسندگان
چکیده
A wide variety of real-life networks share two remarkable generic topological properties: scale-free behavior and modular organization, and it is natural and important to study how these two features affect the dynamical processes taking place on such networks. In this paper, we investigate a simple stochastic process--trapping problem, a random walk with a perfect trap fixed at a given location, performed on a family of hierarchical networks that exhibit simultaneously striking scale-free and modular structure. We focus on a particular case with the immobile trap positioned at the hub node having the largest degree. Using a method based on generating functions, we determine explicitly the mean first-passage time (MFPT) for the trapping problem, which is the mean of the node-to-trap first-passage time over the entire network. The exact expression for the MFPT is calculated through the recurrence relations derived from the special construction of the hierarchical networks. The obtained rigorous formula corroborated by extensive direct numerical calculations exhibits that the MFPT grows algebraically with the network order. Concretely, the MFPT increases as a power-law function of the number of nodes with the exponent much less than 1. We demonstrate that the hierarchical networks under consideration have more efficient structure for transport by diffusion in contrast with other analytically soluble media including some previously studied scale-free networks. We argue that the scale-free and modular topologies are responsible for the high efficiency of the trapping process on the hierarchical networks.
منابع مشابه
Hierarchical Organization of Modularity in Complex Networks
Many real networks in nature and society share two generic properties: they are scale-free and they display a high degree of clustering. We show that the scalefree nature and high clustering of real networks are the consequence of a hierarchical organization, implying that small groups of nodes form increasingly large groups in a hierarchical manner, while maintaining a scale-free topology. In ...
متن کاملMining Overlapping Communities in Real-world Networks Based on Extended Modularity Gain
Detecting communities plays a vital role in studying group level patterns of a social network and it can be helpful in developing several recommendation systems such as movie recommendation, book recommendation, friend recommendation and so on. Most of the community detection algorithms can detect disjoint communities only, but in the real time scenario, a node can be a member of more than one ...
متن کاملModeling for evolving biological networks with scale-free connectivity, hierarchical modularity, and disassortativity.
We propose a growing network model that consists of two tunable mechanisms: growth by merging modules which are represented as complete graphs and a fitness-driven preferential attachment. Our model exhibits the three prominent statistical properties are widely shared in real biological networks, for example gene regulatory, protein-protein interaction, and metabolic networks. They retain three...
متن کاملWorkshop on Clustering and Search techniques in large scale networks Hierarchical network clustering by modularity maximization
Community detection based on modularity maximization is currently done with hierarchical as well as with partitioning heuristics, and, in a few papers, exact algorithms. Hierarchical heuristics aim at finding a set of nested partitions. They are in principle devised for finding a hierarchy of partitions implicit in the given network when it corresponds to some situation where hierarchy is obser...
متن کاملComplex networks with scale-free nature and hierarchical modularity
Generative mechanisms which lead to empirically observed structure of networked systems from diverse fields like biology, technology and social sciences form a very important part of study of complex networks. The structure of many networked systems like biological cell, human society andWorld Wide Web markedly deviate from that of completely random networks indicating the presence of underlyin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 80 5 Pt 1 شماره
صفحات -
تاریخ انتشار 2009